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DYNAMICS OF ELASTIC ELECTRICALLY CONDUCTING SHELLS IN CONSTANT 
AND NON-STATIONARY MAGNETIC FIELDS* 

A.L. HADOVINSKII 

A system of non-linear equations of the electromechanics of thin elastic 

shells of finite conductivity is obtained by the asymptotic integration 

of Maxwell equations (in the quasistationary approximation) and the 

equations of the theory of elasticity by using the relative half-thickness 

11 as a small parameter. It is shown how two of their fundamental linear 

limit forms corresponding to two known classes of problems: 1) determining 
the influence of a permanent magnetic field on the free vibrations of 

elastic shells /l/, and 2) the determination of the shell deformation due 
to ponderomotive forces caused by eddy currents indiced by alternating 

magnetic fields /2-4/, can be obtained from these equations by neglecting 

asymptotically small terms. A system of boundary conditions is given, 
and initial conditions for certain of the problems 2. Deductions are 

made from an analysis of the asymptotic accuracy about the limits of 

applicability of the equations obtained (and also of analogous linear 

equations obtained by different authors /l-3/). It is shown that the 
accuracy of any linear eqpations corresponding to problems 1 or 2 cannot 

be greater than O(q). 

1. Formulation of the problem. A triorthogonal coordinate system (a,,a,, cLQ) is 
given in an unbounded space V such that its coordinate surface a3 = 0 agrees with the middle 

surface S of a certain shell /5/. This shell occupies the domain W) bounded by facial 

surfaces given by the equalities aQ = _th and closed by an edge surface defined by the 

equation cp (a,,a,) = 0. The external domain W) = V - I'(') is occupied by a substance whose 

properties are identified with the properties of a vacuum, while the internal domain Vci) is 

filled by a material with linear elastic properties, finite electrical conductivity IS, and 

relative magnetic permeability of one. 
We examine the problem of determining the vibrations of a small elastic shell in a given 

variable magnetic field. 

Neglecting displacement currents and assuming there are no secondary currents, we write 

Maxwell's equations in the form /6/ 

-_Br + ~OoB,'=~~orot(u' x Bs), divBz= 0 (1.1) 

Here Br is the total magnetic induction vector, u is the elastic displacements vector 

of the medium, and p0 is a magnetic constant; the dot denotes a derivative with respect to 

time t. 

We shall assume that 
B,=B+b (1.2) 

where B = B (a,, a,, clg, t) is generally the induction of the alternating magnetic field given 

in the whole domain V by solving the electrodynamic problem for a certain secondary field 

source when there is no shell (i.e., assuming that the whole space V has the properties of a 

vacuum), b is the induction of the desired current field in the shell (we later understand 

b@) and hW to be the values of b in the domains V(e) and W, respectively). 

In particular, this means that B everywhere satisfies the equations 

AB = 0, div B = 0, rot B = 0 (1.3) 

When this is taken into account, after substituting (1.2) Eqs.Cl.1) can be written in the form 

Ah(e) =O, div b(e) ~0 in VW (1.4) 

-Ah@) +poabYo =_I~~o {--B' + rot [u’ i: (B + b@j)]) (1.5) 

div b(“) = 0 in V(l) 

We will write the equations the dynamics of an elastic medium occupying the domain VC') 
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in the form 

(h + p) grad div u + ~Au - pu" = --g 

where h and to are the Lame/ elastic constants, p is the density 

q is the volume ponderomotive force vector expressedinterms of 
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(1.6) 

of the shell material, and 

the current density j. Taking 

(1.2) and (1.3) into account, the formulas for finding them can be written in the form 

q=j x (B + b(l)), j= p0-l rot b(j) (1.7) 

Eqs.(1.4)-(1.6) must be integrated over the whole domain V when certain conditions are 

satisfied on the facial and edge surfaces. Some of these conditions are of an electromagnetic 

nature and can be reduced, in the case under consideration, to the equations 

J,(e) = b(',, n.rot b(") =O (1.8) 

where n is the vector of the normal to the surface separating the domains V(i) and V@) (if 

the shell edge surface is not insulated, then the electromagnetic condition thereon will differ 

from (1.8)). Part of the conditions is mechanical in nature /5/ and is imposed on certain 

displacement functions. 

The condition of boundedness at infinity is additionally imposed on the induction b@). 
By solving the problem in question, all the remaining parameters of the electromagnetic 

and mechanical fields can be determined by direct operations using known formulas /5, 6/ of 

the corresponding theories. 
This formulation of the problem differs from that presentedin /l/ solely in the fact that 

the induction B can be variable, andthe equations are not linearized in the domain VC') by 

neglecting b(Q compared with B. 

2. Asymptotic integration. We will consider the equations of Sect.1 by transferring 

to the independent variables &., 5, T,,T, therein by means of the formulas 

ah. = q”R&., a3 = IIR; (2.1) 

t=q’~onR’~, (B (1.5)), t= '1' fpiE Rr, (b(l.G)) 

where 11 = hlR is the relative half-thickness, R is the characteristic radius of the shell 

curvature, and p, 1,r are numbers that will be determined below. The subscripts k, m,i,j used 

here and henceforth takethevalues k, m = 1,2, k # m,i,j = 1,2,3. 
We refer the surface S to the lines of curvature. Then the Lam& coefficients are given 

by the formulas 
Hh. = A,a,, a,,=1 +as/R,,, Hz=1 (2.2) 

where Rk are the normal radii of curvature of the surface S. As in /5/, the different 

combinations of a,,a, in the equations, which are obtained by multiplication or division, 

will be replaced by series of the form 

f (a, a) = B (f), (W. (f), = W’ [3”fP (?3'"1~=0 (2.3) 

Here and henceforth x always denotes summation between n = 0 and n = V. 

When determinins the terms of the expansion (2.3), a3 in (2.2) must be replaced as given 

by formulas (2.1). We then obtain, in particular 

(f)o=l, (a,a2),=+ -I- +, (a,,)l:-- (+jI=-+, 
RS 

(ala& = - 
RIRZ 

the components of given vector B in the form of the expansions We will represent 

where C, cl,,, d,,, are numbers whose values are determined below. 
We substitute (2.1)-(2.5) into (1.5) and we satisfy these equations by satisfying the 

equations obtained by successive matching of the coefficients of identical powers of 5 therein 

(we call them the c-equations). We shall here consider the numbers p,l,r to have been 

(24 

and we will seek the components of the vectors b(i) and u in the form 

(2.5) by) = &f x j’&q’Jnb jn, u j = R 2 ;"qdJnu jn 

bjn= bjn (al, ai, t), uj,, = ujn(al, a, t) 



616 

selected so that differentiation of the desired functions with respect to Ekrr,,r8 will not 
result in a changeintheir asymptotic orders. (In particular, this means that p agrees in 
meaning with the index of variability /5/ of the desired state). We take into account that 
according to (2.3) and (2.4) the quantities (f), and Bm are of the order of 110. Moreover, 
we assume that the numbers C, cl,,, dill. are selected such that the quantities bj, and uj, 
determined from the c-equations are also of the order of T)O. Then all the coefficients of 
these functions in the b-equations will have the structure qxP, where P are certain operators 
or multipliers that do not influence the asymptotic form of the corresponding term, while 11% 

is a multiplier governing its asymptotic order. Only the asymptotically principal components 
(containing n to the lowest power) allowing a certain estimatable error here, can be contained 

in each of the c-equations. The equations obtained in this manner should be consistent, 

i.e., several different expressions should not be obtained to determine the very same quantity, 

and the quantities determined themselves from these equations should be oftheorder of V. 
The equations obtained from (1.5) by this method can satisfy the last condition if 

C30=CIo=c81 =cli-, =o, CSl==l, c32 = 1 - p, dj,=l (2.6) 

is taken for the first terms of the expansions (2.5). 

From the j-equations obtained by equating the coefficients of 5" and 5 in the second 

and of co in the first of Eqs.(1.5), we obtain the following relationships after some 

identity manipulations: 

b 31 = --[(w&b,, + P’ (Po,b,o f Pozb,o)l 

b,, = --{@‘cab,, + Po,b,,) + rll+’ [(w&bsz -I- (w&b,,1 f 

r (p,,b,o + Pnbzo)V2 

(2.i) 

Here 

and Qjo are the first terms of the expansions Qj = B?fX~“$j”Qj,, of the right-hand sides of 

the first equation in (1.5), obtained by substitutinq the relationships (2.1) and the 

expansions (2.3)-(2.5) therein. In particular (taking (2.6) into account), we have 

The last equation in (2.7) connects the terms of the expansion (2.5) for the induction 

of the desired current field to the left of the equality sign with the components governing 
the perturbations causing these currents that are on the riqht-hand side. Hence, the number 

c giving the asymptotic form (2.5) of the induction b(‘) is selected so that at least one of 

the components on different sidesoftheequality signwillbeamongthenumberof asymptotically 
principal terms in the last equation in (2.7). This condition is satisfied by 

Using (2.9) we can determine the relationship between the asymptotic orders of any pair 

of components in each of Eqs.(2.7). We will neglect terms 

0 (n'e), s, = miri (2 - 1, 1 - p) (2.10) 

compared with the asymptotically principal terms in the equations below, i.e., we will 

construct equations to the accuracy of the quantities (2.10). When comparing the exponents 

in (2.7) we shall consider p and 1 bounded by the inequalities 0~ p< 1 and l<Z, whose 

meaning will be given below. 
Let us consider the problem of satisfying the electromagnetic conditions on linear 
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surfaces. 
We satisfy (1.4) by assuming that 

where ij are the unit directions along aj, and b, is a potential function satisfying the 

Laplace equation in the domain V@) 

Satisfying the first condition of (1.8) to an accuracy corresponding to (2.10), and 

taking acount of (2.31, (2.5), (2.6), (2.7) and (2.11), we obtain the expressions 

(2.12) 

Because of expressions (2.12) obtained for bkO and bkl, it can be shown that the 

second condition of (1.8) is satisfied to an accuracy exceeding (2.10) by substituting (2.5) 

therein. 
Discarding small terms when substituting (2.11) into the first equation of (1.8) means 

that the domain V(‘) is reduced to a mathematical slit in S. The error here equals O(q), i.e. 

it corresponds to (2.10). 
We return to (1.6). Integration of its corresponding system of scalar equations in the 

slender domain V(i) (occupied by the shall material) under the appropriate conditions on the 

facial surfaces is the ordinary problem of constructing the equations of dynamic shell theory 
and is realized by stretching the scale using formulas (2.1). This problem can be formulated 

in the terminology of /5/, say, ifthevolume forces are understood to be ponderomotive forces 
together with inertial forces. The equations obtained here can possess an accuracy no lower 

than 
0 (q'+), s, = min (2 - 2r, 1 - p) (2.13) 

if the inertial terms are taken in the usual form /7/ and a magnetic pressure X is introduced 

with components determined from the formulas 

X1 = Phqj, (2.14) 

where 9i0 are the first terms of the expansion q, = Z6”qj, obtained by substituting (2.1)- 

(2.6) into (1.7). They have the form 

qno = B2(poR)-‘~c-1 (&a + $bso) bi, (2.15) 

qso = - B2 @OR)-’ qc-’ [(ho + v%o) h + (ho + q%o) ba] 

We will write these equations by appending (2.12) and the last equation in (2.7) to them. 

(In passing, we omit the second component with the factor nC-P in the last equation in (2.7); 

it is a quantity of the order of q compared with the first term containing the factor T)~-~-~). 

We make the reverse substitutions (2.1) in the equations and substitute qcb30,q*bko,qCbkl accord- 
ing to (2.12). Going back to dimensional quantities according to (2.4) and (2.5), we obtain 

the system of equations 

Here L,j and N,j are the membrane and couple-stress operators of shell theory (they 

can be taken in the form given in /7/j, A. is the two-dimensional Laplace operator in S (it 

can be obtained from AE by the formal replacement of Sk by ak), Bj is understood to be the 

values of the components of the vector B on the surface S,uj are displacements of the shell 
middle surface, the subscripts i,j,k, m are ascribed the values taken here and it is considered 

that summation is over repeated indices, while il -jis are factors introduced for convenience 

in the exposition (although they must be considered to be equal to one). 
To the accuracy of (2.10) the linear current J in a shell can be expressed in terms of 

the quantities (2.16)-(2.18) by means of the formula 
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(2.19) 

Remarks. lo. After (2.16)-(2.18) have been solved, when the function 4, has become known, 
all the terms of the expansions b(.i' considered in Sect.2 can be determined by direct 
operations: ozO, bRu and J+ from (2<12) , and h, h,,, btn from (2.7). To determine the next terms 
in the expansions (2.5) it is necessary to construct the next corresponding to (1.5) after the 
;-equations considered. 

20. The conditions of formal asymptotic convergence of the process in question is the 

requirement that the indices 'e and e, of degree q in (2.10) and (2.13), which govern the 
asymptotic form of the discarded terms, should be positive. According to (2.1) this yields 
the following symbolic inequalities 

constraining the properties of the processes under investigation to limits within which the 

two-dimensional dynamic theory of shells is valid and there is no skin effect. 
3O. The boundary conditions for (2.16)-(2.18) can provisionally be separated into the 

following groups. 

Mechanical conditions which can be understood to be the usual boundary conditions of 

shell theory expressed in terms of displacements of the middle surface. These conditions can 
be satisfied because of the arbitrariness of (2.17). 

Electrodynamic conditions, one of which is the natural requirement of the boundedness of 
0 at infinity, while the other is imposed on the value of certain quantities in (2.16)-(2.18) 

at the shell edge. In particular, where there should be no current along the normal to the 
edge on an insulated edge, this condition is satisfied, according to (2.19) if the edge value 
of the function F equals zero. 

3. Limiting fCKIXS of the magnetoelasticity equations. Eqs. (2.16)-(2.18) are 

a closed system of the equations of the dynamics of elastic thin-walled shells in magnetic 

fields and are non-linear because of the components containing the product of jj and certain 

derivatives of F and u,. We will show that (2.16)-(2.10) can be linearized for the solutions 

of problems 1 and 2 defined at the beginning of the paper (because of the neglect certain 

components) by thereby going over to certain limit forms. 

The number [7 determining the asymptotic form of the sums Qja and, particularly, QsO 
remains indefinite in the derivation of (2.16)-(2.18). Equating the index g of degree ?j in 

(2.8) on the left-hand side of the equations to the least of the indices of powers of the 

factor q on the right-hand side and taking into account that the first component on the 

right-hand side is identically zero in the problems 1 (the quantity Bzo is constant with 

time), we obtain the formulas g = l-p - 1 (in problems 1) and g = --I (in problems 2). 

It follows from (2.9) that the minimum values of c governing the maximum asymptotic form of 
bjOl according to (2.5) are 

c = 1 -p ( in problems I), c = 0 (in problems 2) (3.1) 

This means that for problems 1 the components tlcbj, can be neglected with accuracy 

OtP) as compared with Bj, in (2.8) and (2.15). we take into account also that in 

problems I c?Ba$& = 0. Neglecting the appropriate terms in (2.16)-(2.18) t we obtain the limit 

form of the equations that corresponds to problems 1. It follows from (2.16)-(2.18), if we 

set jt = jz = 0,j3 = 1. (The functions fk do not enter the equations here). 
Discarding the components nchjo compared with Bj, in problems 2 is not legitimate since 

they can be of the identical asymptotic order. However, (to the accuracy of O(qlmp)) it is 
allowable to omit the second group of components on the right-hand side of (2.8). This means 

that the limit form of the equations corresponding to problems 2 follows from (2.16)-(2.18) 

if we set j3 = O,jI = jz = 1. 
We note that according to (3.1), (2.51, (1.7) and L2.15), the eddy current density and 

magnetic pressure in problems 2 is F" times greater than in problems 1 for an identical 

magnetic field intensity level. 

4. Discussion of magnetoelasticity problems. The limiting system of equations 

of problems 1 is coupled. It can be obtained from the equations given in /l/, if the tangentia 
electrical field components in the shell are eliminated in them and asymptotically small 

terms are neglected /8/. Depending on the frequency of vibration and the magnetic field 

strength, these equations can be simplified additionally in the same way as in /9, lo/ with 
the magnetoelasticity equations of a three-dimensional body. 

The limit system of equations for problems 2 uncouples and Can always be solved in three 

successive steps. The first step is to determine the functions 0, F,f, on the basis of 
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(2.16) (js = 0). The second is to determine the magnetic pressure vector components X, by means 

of (2.18) by direct operations. And the thrid is to integrate (2.17) for given right-hand sides 

and to find the shell displacements Uj* If necessary, the eddy currents can be found by means 

of (2.19) by direct operations after the first step. 

This scheme is common for the following problems 2. 

lo. Determination of the steady vibrations in harmonically varying magnetic fields at the 

frequencies W < o,,, = min (o,, 0.). Problems on vibrations in a field of variable currents, 

vibrations caused by the relative rotation of the field and the shell as well as their combina- 

tions are belong here. The expressions obtained for the displacements in these problems show 

the presence of resonances at twice the frequency of the electromagnetic excitation and, as a 

rule, contain a constant (time independent) component. 

2O. Determination ofthe action of a smooth electromagnetic pulse /4/ satisfying the 

condition Fiat< cornax, or equivalently, the duration r>om,,-' , on a shell. (For a steel 

shell 2h = 1 mm thick t > 2,2 psec) . In this case the equations of the problem must be 

supplemented by homogeneous initial conditions on @, Uj and Uj'. 

3O. The effect of connecting or disconnecting a permanent magnetic field on a shell. (The 

changein field can be considered as stepwise if aiat > 0, in the front). For these problems 

it is necessary to set B =const in these equations. The right-hand side (B3' = 0 or formally 

j2 = 0) vanishes in the first equation of (2.16) here. They must be supplemented by initial 

conditions which have the respective forms f3 = -B, and fs=B3 (for t=O) for a step 

switch-on and switch-off of the magnetic field B. The solution of this problem is the sum of 

exponentially decaying proper solutions of (2.16) in time (ia=j3 = 0) and by means of (2.18) 

determines theexponentiallydecaying right-hand sides of (2.17). The initial conditions for 

Ui and Uj' can be satisfied because of the arbitrariness of (2.17). 

The fundamental mathematical difficulties associated with solving problems 2 are the 

integration of the three-dimensional Eqs.(2.16) which are one form of the eddy-current equations. 

Other forms obtained on the basis of hypotheses of eddy-current equations are contained in 

/2-4/. Thus, in substance, the equations in /2, 3/ are an integral form of Eqs.(2.16) 
corresponding to problem 2. A literature survey on this questions is contained in /2/, and a 

method for the numerical solution of problems to determine the eddy currents in shells is 

also given. Analytic solutions are presented in /3/ for plates and shells of simple shape that 

are in harmonic and rotating fields. In certain cases formulas are given to determine the 

magnetic pressure. 

The results obtained in each of the steps in solving problems 2 may be of independent 

practical value. 
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